Intro to Matrices

Don't be scared...

What is a matrix?

- A Matrix is just rectangular arrays of items
- A typical matrix is a rectangular array of numbers arranged in rows and columns.

	21	62	33	93
$A_{3x4} =$	44	95	66	13
514	77	38	79	33_

Sizing a matrix

• By convention matrices are "sized" using the number of rows (m) by number of columns (n).

$$\begin{array}{c} A \\ _{3x4} = \begin{bmatrix} 21 & 62 & 33 & 93 \\ 44 & 95 & 66 & 13 \\ 77 & 38 & 79 & 33 \end{bmatrix} \\ \begin{array}{c} B \\ _{3x3} = \begin{bmatrix} 7 & 3 & 2 \\ 8 & 4 & 1 \\ 6 & 5 & 9 \end{bmatrix} \\ C \\ _{4x2} = \begin{bmatrix} 11 & 4 \\ 14 & 7 \\ 16 & 8 \\ 22 & 3 \end{bmatrix} \\ \begin{array}{c} D \\ _{1x1} = \begin{bmatrix} 17 \end{bmatrix} \end{array}$$

"Special" Matrices

• Square matrix: a square matrix is an mxn matrix in which m = n.

$$B_{3x3} = \begin{bmatrix} 7 & 3 & 2 \\ 8 & 4 & 1 \\ 6 & 5 & 9 \end{bmatrix}$$

· Vector: a vector is an mxn matrix where either m OR n = 1 (but not both). $\lceil 12 \rceil$

$$\begin{array}{c} X \\ X_{4x1} \\ -4 \\ 0 \end{array} \qquad \begin{array}{c} Y \\ 1x3 \\ 1$$

"Special" Matrices

- Scalar: a scalar is an mxn matrix where BOTH m and n = 1. $D_{1x1} = [17]$
- $\begin{array}{c|c} 0 \\ 3x2 \end{array} = \begin{array}{c|c} 0 & 0 \end{array}$ • Zero matrix: an mxn matrix of zeros.
- Identity Matrix: a square (mxm) matrix with 1s on the diagonal and zeros everywhere else. $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

 $I_{3x3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 \end{bmatrix}$

0 0

Matrix Rank

- Matrix Rank: the rank of a matrix is the maximum number of linearly independent vectors (either row or column) in a matrix
- Full Rank: A matrix is considered full rank when all vectors are linearly independent

Transposing a Matrix

• Matrix Transpose: is the mxn matrix obtained by interchanging the rows and columns of a matrix (converting it to an nxm matrix)

$X_{4x1} = \begin{vmatrix} 12\\ 9\\ -4\\ 0 \end{vmatrix}$	$X_{1x4} = [12 \ 9 \ -4 \ 0]$	
$A_{3x4} = \begin{bmatrix} 21\\44\\77 \end{bmatrix}$	$ \begin{bmatrix} 62 & 33 & 93 \\ 95 & 66 & 13 \\ 38 & 79 & 33 \end{bmatrix} $ $ \begin{array}{c} A' = \\ {}^{4x3} = \\ {}^{4x3} = \\ \begin{array}{c} 21 & 44 & 77 \\ 62 & 95 & 38 \\ 33 & 66 & 79 \\ 93 & 13 & 33 \\ \end{array} $	

Matrix Addition

- Matrices can be added (or subtracted) as long as the 2 matrices are the same size
 - Simply add or subtract the corresponding components of each matrix.

Matrix Multiplication

• Multiplying a matrix by a scalar: each element in the matrix is multiplied by the scalar.

$$A_{2x3} = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix} \text{ and } x_{1x1} = 5; \text{ then}$$
$$xA = \begin{bmatrix} 5*1 & 5*2 & 5*3 \\ 5*7 & 5*8 & 5*9 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \\ 35 & 40 & 45 \end{bmatrix}$$

Matrix Multiplication

- Multiplying a matrix by a matrix:
 - the product of matrices A and B (AB) is defined if the number of columns in A equals the number of rows in B.
 - Assuming A has ixj dimensions and B has jxk dimensions, the resulting matrix, C, will have dimensions ixk
 - In other words, in order to multiply them the inner dimensions must match and the result is the outer dimensions.
 - Each element in C can by computed by:

$$C_{ik} = \sum_{j} A_{ij} B_{jk}$$

Matrix Multiplication

• Multiplying a matrix by a matrix:

Reducing Square Matrices

• Trace: the sum of the diagonal of a square matrix.

$$B_{3x3} = \begin{bmatrix} 7 & 3 & 2 \\ 8 & 4 & 1 \\ 6 & 5 & 9 \end{bmatrix}$$
$$tr(B) = 7 + 4 + 9 = 20$$

Reducing Square Matrices

- Determinant:
 - The determinant of a matrix is a scalar representation of matrix; considered the "volume" of the matrix or in the case of a VCV matrix it is the generalized variance.
 - Only square matrices have determinants.
 - Determinants are also useful because they tell us whether or not a matrix can be inverted (next).
 - Not all square matrices can be inverted (must be full rank, non-singular matrix)

Reducing Square Matrices

Determinant:

$$C_{1x1} = \begin{bmatrix} 4 \end{bmatrix} \quad |C| = 4$$

$$C_{2x2} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \quad |C| = (a_1 * b_2) - (b_1 * a_2)$$

$$C_{2x2} = \begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix} \quad |C| = (3 * 1) - (2 * 5) = 3 - 10 = -7$$

Reducing Square Matrices

• Determinant: $C_{3x3} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} |C| = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$ $C_{3x3} = \begin{bmatrix} 2 & -2 & 0 \\ -1 & 5 & 1 \\ 3 & 4 & 5 \end{bmatrix}$ |C| = [2(5*5-1*4)] - [-2(-1*5-1*3)] + [0(-1*5-5*3]] |C| = [2(25-5)] - [-2(-5-3)] + [0(-5-15]] |C| = [40] - [16] + [0] = 24

Matrix Inverse

- Matrix Inverse: Needed to perform the "division" of 2 square matrices
 - In scalar terms A/B is the same as A * 1/B
 - When we want to divide matrix A by matrix B we simply multiply by A by the inverse of B
 - An inverse matrix is defined as

$$A^{-1} \xrightarrow{Defined} A A^{-1} = I_{nxn} AND A^{-1}_{nxn} A = I_{nxn}$$

Matrix Inverse

- Matrix Inverse: Needed to perform the "division" of 2 square matrices
 - In scalar terms A/B is the same as A * 1/B
 - When we want to divide matrix A by matrix B we simply multiply by A by the inverse of B
 - An inverse matrix is defined as

$$A_{nxn}^{-1} \xrightarrow{Defined} A_{nxn} A_{nxn}^{-1} = I_{nxn} AND A_{nxn}^{-1} A_{nxn} = I_{nxn}$$

Matrix Inverse

• Matrix Inverse:

• For a 2x2 matrix the inverse is relatively simple

$$\begin{array}{c} C_{2x2} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} & C_{2x2}^{-1} = \frac{1}{|C|} \begin{bmatrix} a_1 & -b_1 \\ -a_2 & b_2 \end{bmatrix} \\ C_{2x2} = \begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix} & |C| = -7 \\ C_{2x2}^{-1} = \frac{1}{-7} \begin{bmatrix} 3 & -2 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{7}, \frac{2}{7} \\ \frac{5}{7}, -\frac{1}{7} \end{bmatrix} \end{array}$$

Singular Matrix

- Singular Matrix: A matrix is considered singular if the determinant of the matrix is zero
 - The matrix cannot be inverted
 - Usually caused by linear dependencies between vectors
 - When a matrix is not full rank

$$\underset{2x2}{A} = \begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix} \quad |A| = (2*3) - (1*6) = 0$$

• An extreme form of multicollinearity in the matrix