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Intro to Matrices 

Don’t be scared… 

What is a matrix? 

 A Matrix is just rectangular arrays of items 

 A typical matrix is a rectangular array of numbers 

arranged in rows and columns. 
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Sizing a matrix 

 By convention matrices are “sized” using the 

number of rows (m) by number of columns (n). 
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“Special” Matrices 

 Square matrix: a square matrix is an mxn matrix in 

which m = n.  

 

 

 

 Vector: a vector is an mxn matrix where either m 

OR n = 1 (but not both). 
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“Special” Matrices 

 Scalar: a scalar is an mxn matrix where BOTH m 

and n = 1. 

 

 Zero matrix: an mxn matrix of zeros.    

 

 Identity Matrix: a square (mxm) matrix with 1s on 

the diagonal and zeros everywhere else. 
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Matrix Rank 

 Matrix Rank: the rank of a matrix is the maximum 

number of linearly independent vectors (either row 

or column) in a matrix 

 Full Rank: A matrix is considered full rank when all 

vectors are linearly independent 
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Transposing a Matrix 

 Matrix Transpose: is the mxn matrix obtained by 

interchanging the rows and columns of a matrix 

(converting it to an nxm matrix) 
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Matrix Addition 

 Matrices can be added (or subtracted) as long as 

the 2 matrices are the same size 

 Simply add or subtract the corresponding components of 

each matrix.   
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Matrix Multiplication 

 Multiplying a matrix by a scalar: each element in 

the matrix is multiplied by the scalar. 
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Matrix Multiplication 

 Multiplying a matrix by a matrix:  

 the product of matrices A and B (AB) is defined if the 

number of columns in A equals the number of rows in B. 

 Assuming A has ixj dimensions and B has jxk dimensions, 

the resulting matrix, C, will have dimensions ixk 

 In other words, in order to multiply them the inner 

dimensions must match and the result is the outer 

dimensions. 

 Each element in C can by computed by:  

ik j ij jkC A B 

Matrix Multiplication 

 Multiplying a matrix by a matrix:  
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Matching inner dimensions!! 

Resulting matrix has outer dimensions!!! 

  

Reducing Square Matrices 

 Trace: the sum of the diagonal of a square matrix. 
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Reducing Square Matrices 

 Determinant:  

 The determinant of a matrix is a scalar representation of 

matrix; considered the “volume” of the matrix or in the 

case of a VCV matrix it is the generalized variance.  

 Only square matrices have determinants.  

 Determinants are also useful because they tell us 

whether or not a matrix can be inverted (next). 

 Not all square matrices can be inverted (must be full rank, 

non-singular matrix) 

Reducing Square Matrices 

 Determinant: 
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Reducing Square Matrices 

 Determinant: 
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Matrix Inverse 

 Matrix Inverse: Needed to perform the “division” of 

2 square matrices 

 In scalar terms A/B is the same as A * 1/B 

 When we want to divide matrix A by matrix B we simply 

multiply by A by the inverse of B  

 An inverse matrix is defined as  
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Matrix Inverse 

 Matrix Inverse: 

 For a 2x2 matrix the inverse is relatively simple 

 

 

 

 

 

 

 

 

 For anything else, use a computer… 
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Singular Matrix 

 Singular Matrix: A matrix is considered singular if 

the determinant of the matrix is zero 

 The matrix cannot be inverted 

 Usually caused by linear dependencies between vectors 

 When a matrix is not full rank 

 

 

 

 

 An extreme form of multicollinearity in the matrix 
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